

CRYPTOGRAPHIC
SMARTMETERING

Deliverable DT3.2.1.

Version Tracking
Version Description Author Date
0.1 Initial draft. FM & SJ & WM &

TG
10/02/2023

0.2 Improvements FM & TG 27/02/2023
0.3 Review & improvements AD 27/02/2023
0.4 Finalization & Conclusion SJ & FM 28/02/2023
0.5 Further review in comment TS 1/03/2023
0.6 Review part 2 AD & TG 2/03/2023

Cryptographically secure Smartmetering 1

1 INTRODUCTION ... 2
2 DATA COLLECTION .. 3

2.1 METERING DEVICES.. 4
2.1.1 Smart Plugs ... 4
2.1.2 Calibration ... 5
2.1.3 Connection to the BC4P Data Server with MQTT broker ... 7
2.1.4 Flashing custom firmware ... 7
2.1.5 NIEM Devices ... 9

2.2 DATA STORAGE AND VISUALIZATION .. 11
3 VERIFICATION OF THE DATA .. 12

3.1 ASYMMETRIC ENCRYPTION/SIGNATURES .. 12
3.2 IMPLEMENTATION OF THE VALIDATION PROCESS... 14

3.2.1 Adding the signature ... 14
3.2.2 Other changes ... 15
3.2.3 Digital signature in charging stations ... 16
3.2.4 Validation server ... 17

4 RESULTS AND VISUALIZATIONS ... 20
5 CONCLUSION & FURTHER DEVELOPMENTS ... 21
6 REFERENCES .. 22

Cryptographically secure Smartmetering 2

1 Introduction

Climate change and the associated energy transition are major challenges which also
affect the way power is produced and how it is traded.
Central power production plants are supplemented e.g. by decentralized production of
private photovoltaic systems.
To cope with the fluctuating production of renewable power systems, flexibility of
consumers and sophisticated energy monitoring will be necessary.
The energy monitoring acts as an enabler in multiple ways: it visualizes the energy
consumption of specific devices and how and when those devices are used. This opens
the possibility to lower the total energy consumption or to shift the peak energy
consumption time. Prosumers also have the option to match their energy demand with
their energy production, which increases the consumption of in-house produced energy,
puts less load on the power grid and lowers cost for bought-in (i.e. out-of-house produced)
energy [1].

For these reasons energy monitoring plays a critical role in a modern and decentralized
energy market. This project aims to deliver a platform not only for energy monitoring but
also for using that information for trading energy in a safe way based on blockchain
technology. As part of this project, we will also develop cryptographically secured smart
metering devices. The security will ensure that measurements sent by the metering
devices can not be manipulated during transmission to a server (a centralized system
where the data is stored). Figure 1 shows the concept of the decentralized metering
solution which will be further examined in the following chapters.

Figure 1. Concept for the decentralized campus metering solution

The system consists of multiple stakeholders e.g., the FH-Aachen Campus Jülich, the PXL
campus, and some private households and companies where smart cryptometers have
been installed. The measurements of these stakeholders are sent to a database on FH-
Aachen’s servers, which are visualized through a Grafana dashboard [2]. Besides the
visualization of the data, another goal of this project is to show how a regional Peer-to-

Meter-Data
Storage

FH Aachen

Private
Consumer

FH-Aachen
Campus

Regional P2P
Market

FH-Aachen
employee

Commercial
Consumer

Dashboard
FH Aachen

PXL Campus

Visiting
Researcher

Regional P2P
Market

Cryptographically secure Smartmetering 3

Peer (P2P) Market could be implemented in a decentralized energy market concept.
Therefore, an app will be developed which has the goal to trade energy locally between
prosumers. Prosumers generating more power than they consume can sell the power to
other prosumers, whose consumption is higher than their production. To follow the
decentralized idea, blockchain technology will be used for trading energy. By using a
blockchain, the data will be stored safely, transparently and will be distributed while being
highly available. Trading will be done through a cryptocurrency. Blockchain technology
with a cryptocurrency could make trading through an intermediary in form of a central
authority, e.g. a grid operator, obsolete. The blockchain uses a consensus algorithm to
keep a valid network state so all network participants can trust the blockchain [3].

As illustrated in Figure 1, this enables many small and decentralized energy markets
consisting of prosumers which are a part of the European or global energy market.
However, trading energy requires an energy monitoring of the production and
consumption of power which will be explained in the following chapter.

2 Data Collection

To create a decentralized smart metering system, multiple components are needed.
Those can be split from the macroscopic view into administrated servers and metering
devices. This solution also enables to store data from other existing measurements from
different data stores.

Figure 2 shows an overview of the created structure.
On the left, modern home metering devices which are installed as a plug or with clamps
are shown. These devices can send the measured values through a message broker,
MQTT (Message Queue Telemetry Transport)1.
As a translator Telegraf is used to read the data from MQTT and write it into a time series
database called InfluxDB.
The data stored in InfluxDB can be displayed in Grafana, a tool to create dashboards.
There, the final resulting Dashboard can be adjusted as required.

1 https://mosquitto.org/

https://mosquitto.org/

Cryptographically secure Smartmetering 4

Figure 2. Overview of used components for the technical execution

2.1 Metering Devices

As metering devices, various available smartmeters were tested.
They can be classified into two categories:

- SmartPlugs,
- Non-intrusive energy meter devices.

In the following chapter these devices, advantages and disadvantages will be presented.

2.1.1 Smart Plugs

Multiple plugs are available from different
manufacturers and can be bought on the internet.
Manufacturers include the company Shelly, Atom and
Nous, to name a few of the popular choices. We tested
those devices and calibrated them to compare them
with similar plugs. Other devices are mostly
compatible too, as most smart home plugs are using
an Espressif 8266 (ESP8266) microcontroller
internally.
These devices can be fully flashed (installed, see
chapter 2.1.4) with the open-source Tasmota
firmware. This firmware can be adapted to make custom changes to the source code to
extend the functionality. For example, meter value signatures can be implemented. This
is something we did in this project.

The installation procedure differs among the devices. Some devices are pre-installed by
the OEM (Original Equipment Manufacturer) with a different firmware and must be

Figure 3 ESP8266 microcontroller

Cryptographically secure Smartmetering 5

flashed with Tasmota first. Furthermore, some devices must be calibrated before use,
which needs additional technical calibration equipment.

An overview of devices and their properties is shown in Table 1:

Device Needs
calibration

Installation Accuracy Max power

Nous A1 Yes Preinstalled ⬤ ⬤ 3680W
Shelly Plug S No OTA API ⬤ ⬤ ⬤ 2500W
Athom Plug No preinstalled ⬤ ⬤ ⬤ 3680W
Shelly Plug No OTA API ⬤ ⬤ ⬤ 3500W
Nous A5T (3-plugs) Yes Preinstalled ⬤ ⬤ 3680W
Gosund SP1 Yes UART ⬤ ⬤ 3650W
Gosund EP2 Yes UART ⬤ ⬤ 2500W
Tasmota OEM
EU smart Plug Wifi

No Preinstalled ⬤ ⬤ 3680W

SONOFF S26R2 10A No UART ⬤ ⬤ ⬤ 2200W
SONOFF S26R2 16A No UART ⬤ ⬤ ⬤ 3680W
CloudFree EU Smart Yes Tasmota ⬤ ⬤ 3680W
DeLock Power Sock Yes Tasmota ⬤ ⬤ 3680W

Table 1. Properties of the different evaluated smart plug devices

The installation and calibration process will be described
in the following chapter.
To flash the Shelly Devices with Tasmota, the device
needs a connection to the internet. If privacy is a
concern, using a local webserver to receive device
updates works too. If the device is reachable on the
same network, the user of the device has to enter an
update URL in the web browser, which can be copied
from the public Repository2.
Afterwards, an update to the latest Tasmota firmware
can be performed. The calibration of this device will be
kept during this process and works very well in general.

2.1.2 Calibration
For other devices, especially the Nous with preinstalled
Tasmota firmware, a calibration procedure is needed,
which will be described in detail. By default, the voltage
measured by these devices can differ enormously from
the actual voltage. From our experience the range can
vary between 95 V and 311 V as seen in figure 4. For

2 https://github.com/arendst/mgos-to-tasmota

Figure 4. Tasmota web interface

https://github.com/arendst/mgos-to-tasmota

Cryptographically secure Smartmetering 6

accurate measuring results it is recommended to calibrate power, voltage and current.
Before calibration the Tasmota WiFi has to be configured. Therefore, one can enter the
WiFi SSID and the password in the user interface. When doing this for multiple devices in
a row it might be more convenient to do this process through the web API call which is:
http://192.168.4.1/wi?s1=SSID&p1=WIFI-PASSWORD&save=

To calibrate the device, it is recommended to connect a pure ohmic consumer with a
known power like a 60 W light bulb, which uses 100 % active power. While measuring the
load with an already calibrated device (e.g. a multimeter) one must enter the correct
values for the load by typing the following commands into the Tasmota web console:

PowerSet 60.0 (in Watt)
VoltageSet 235 (in Volt)
CurrentSet 260 (in mA - milliampere)

Figure 5. Console View with Calibration Commands entered

Note that while the power and the voltage are entered
in Watts and Volts, the value of the current must be
entered in mA instead of Ampère.
If done correctly, the “Power Factor” should be 1.00 for
a light bulb due to its pure ohmic property. This step
is needed to get correct values for the resulting
measurements of apparent, active and reactive power
from the device. An exemplary view of the calibration
console is shown in Figure . Note that in contrast to
the calibration of the voltage, the calibration of the
power factor phi can only happen with a load
connected to the device. Figure 6 shows an exemplary
test setup for the calibration process.
Details on the calibration can be found in the
documentation of the project3

3 https://tasmota.github.io/docs/Power-Monitoring-Calibration/

Figure 6. Image of the calibration process
usage a power clamp and a known 60W
light bulb

http://192.168.4.1/wi?s1=SSID&p1=WIFI-PASSWORD&save=
https://tasmota.github.io/docs/Power-Monitoring-Calibration/

Cryptographically secure Smartmetering 7

2.1.3 Connection to the BC4P Data Server with MQTT broker
To be able to send data to a server one can set up
MQTT in a compatible metering device. In Tasmota
this can be done manually through the menu
(Configuration  Configure MQTT):

For the BC4P project a monitoring server at FH-
Aachen was installed, where the metering data can
be sent to. Known device types will be
automatically added to the monitoring system
after MQTT setup. The host can be set to
“bc4p.nowum.fh-aachen.de”. The port remains the
default one “1883”. After entering the user “bc4p”
and the password, one needs to give the device a
Topic, which defines the name of the metering
device within the system. This name will also be
used as a display name for the device in the
Grafana Dashboard. Thus, a representative name
should be chosen for the Topic, such as
“metertype_location-room_device”. An example
can be seen in Figure 7. The fields “Client” and “Full

Topic” can stay at their default value. This step can also be done by using an API call like:
http://10.20.1.8/mq?mh=bc4p.nowum.fh-
aachen.de&ml=1883&mc=DVES_%2506X&mu=MQTT_USERNAME&mp=MQTT_PASSWOR
D&mt=MQTT_NAME&mf=%25prefix%25%2F%25topic%25%2F&save=

2.1.4 Flashing custom firmware
Within the BC4P project a modification was made to the Tasmota software. It makes sure
the data is being signed by the device before it is sent over MQTT. With this newly
implemented functionality the data can be validated on the server before storing it in the

database. The modifications will be presented in detail in
Chapter . This custom firmware can be installed on the Tasmota
devices in a process which is called “flashing”. With Tasmota the
devices can be flashed over the air (OTA), which means that the
process can be done through Wi-Fi without physically connecting
the device to a computer. From the main menu one simply can
go to the “Firmware Upgrade” section.
Here the custom BC4P firmware, which can be downloaded from
the BC4P GitHub page4, can be selected from a file and the flash
process can be started by clicking “Start upgrade”. With this the
data that gets sent through the network will be encrypted and
signed.

Figure 8. Flashing the Tasmota device OTA with the binary

4 https://github.com/bc4p/Tasmota

Figure 7. MQTT Settings on the Tasmota web
interface

http://10.20.1.8/mq?mh=bc4p.nowum.fh-aachen.de&ml=1883&mc=DVES_%2506X&mu=MQTT_USERNAME&mp=MQTT_PASSWORD&mt=MQTT_NAME&mf=%25prefix%25%2F%25topic%25%2F&save=
http://10.20.1.8/mq?mh=bc4p.nowum.fh-aachen.de&ml=1883&mc=DVES_%2506X&mu=MQTT_USERNAME&mp=MQTT_PASSWORD&mt=MQTT_NAME&mf=%25prefix%25%2F%25topic%25%2F&save=
http://10.20.1.8/mq?mh=bc4p.nowum.fh-aachen.de&ml=1883&mc=DVES_%2506X&mu=MQTT_USERNAME&mp=MQTT_PASSWORD&mt=MQTT_NAME&mf=%25prefix%25%2F%25topic%25%2F&save=
https://github.com/bc4p/Tasmota

Cryptographically secure Smartmetering 8

To verify if the flashing process was successful, one can go to the “Information” section
and check the “Program Version”, which should include “BC4P” in the name. Also, the
newly added field “Public Key” can be found here. With this key the server can verify that
the data that it is receiving is valid and has not been tampered with by a third party. It
needs to be shared to the server after setup. More details regarding encryption and
signature using public and private keys will follow in Chapter 3.1. Additionally, the version
information at the bottom of the menu should have changed to a version name including
the tag “BC4P”.

Figure 9 Location of the public key on the Tasmota web interface

Figure 11 shows the signature inside a MQTT message that is being sent by one of your
Smart-Crypto-Meters.

Besides the plug devices, there are the larger NIEM devices used to monitor whole
distribution connections. We describe this in the following chapter.

Figure 10: Custom Version text at bottom of menu

Figure 11: MQTT message including the signature

Cryptographically secure Smartmetering 9

2.1.5 NIEM Devices
The non-intrusive metering devices are quite rare, as
the installed location is often not easily accessible and
sometimes needs to be installed by an electrician
because it is connected directly near the main fuses.
After the installation one has a complete overview of
the total energy usage of all devices connected to the
installation – for example the whole building.
Using non-intrusive metering methods has the
advantage of installing without rewiring the installation
or creating downtime.
The disadvantage on the other hand is, that the current
is not measured directly but through the inductive
measurement from the energy clamps.
The accuracy of the clamps is, for example from the
Shelly 3EM given as ±1% (2 - 120 A), ±2% (1 - 2 A), ±5% (0
- 1 A), which is good enough for our application in this
research project.

Available devices include the SmartPi 3 from Enerserve.eu, the Shelly 3EM, a self-built
device using a microcontroller and a current clamp and radio-based meter using
PowerRadar PAN10 and PAN12 sensors.

The options are described in Table 2:

Device Shelly 3EM SmartPi 3.0 PowerRadar
Sensors

DIY
Smartmeter

Needs
calibration

No Yes No Yes

Needs
accurate
voltage

Yes, per
phase

No (but did not
work without)

No Fixed value

Cost ~ 100€ ~ 300€ ~ 140+ gateway ~ 50€
Custom
Firmware

Tasmota
support

Open-Source,
Raspbian
based

Proprietary Arduino-based

WPA3 support No No (did break) No No

MQTT
configuration

No
configurable
topic

Yes MQTT not
supported

Yes

Configuration Easy Advanced Advanced Advanced

Table 2. Comparison of different NIEM devices

Figure 12. Enerserve SmartPi - non-intrusive
metering

Cryptographically secure Smartmetering 10

In Table 2 one can see that the SmartPi 3.0 is said to support using a fixed voltage instead
of measuring the voltage from its source, which makes this truly non-invasive, yet reduces
the accuracy as the voltage changes are not measured. This is sufficient for most use cases
without billing. On the other hand, the Shelly 3EM does also support Tasmota making it a
good candidate for the use with a custom firmware for the cryptographically secure
smart-metering.
Furthermore, it comes pre-calibrated and does not need the described calibration
procedure before commissioning.

The setup routine for the Shelly 3EM is as follows:
When this device is correctly wired and connected to the grid, it opens its own Wi-Fi
network with a SSID like Shellyem3-123456789. Now we can join this network with a
laptop/smartphone, open the default web interface at http://192.168.33.1 in the browser
and configure SSID and password of the network the Shelly shall operate in. Now the
Shelly will show its future IP on the website, that should be written down before the device
is rebooted. If it doesn't show its IP, a network scanner (e.g., Angry IP Scanner) can be used
to find it. After the reboot the Shelly can be found under its new IP address in the newly
connected Wi-Fi network. Shelly supports MQTT by default, and the MQTT broker settings
can be entered from the menu. However, the device name for the MQTT communication
cannot be changed from the menu like in Tasmota. The MQTT setup in the Shelly web
interface can be done through the settings tab. For details see manufacturer’s manual5

The SmartPi comes with a SD-Card which contains a pre-installed operating system
based on Raspbian (Linux).
First the SmartPi needs to be connected to the power supply so the initial boot can be
started. Then the device can be connected to a laptop via a LAN cable. Usually, the
SmartPi should automatically set up a connection to the laptop using DHCP and the
SmartPi should be reached through the static IP 169.254.3.10 via ethernet. However,
sometimes this does not work, so after connecting the ethernet cable one can give the
Laptop/PC a static IP from the address range of the SmartPi e.g. 169.254.3.20/24, leave
the gateway empty.
Now the SmartPi can be accessed via SSH, linux-terminal: "ssh smartpi@169.254.3.10",
the password is smart4pi. Under Windows the same can be done with the tool PuTTY.
The config mode of the device can be entered by typing "sudo raspi-config" into the
console. From there the SSID and password of the WiFi that should be used can be set
under "System Options"  "Wireless LAN".
After that one can reboot the SmartPi with the command "sudo reboot".
With the LAN connection still established open the SmartPi interface in the browser
under http://169.254.3.10. From the menu with the three dashes (burger menu) one can
go into the settings and log in with user "smartpi" and password "smart4pi. Here the
MQTT settings can be adjusted using the credentials described earlier.
In the settings menu one can also change the name of the device and choose if the
voltage should be a measured value or a fixed value, which can be set to a value (e.g.
230V). However, during our tests, the SmartPi was only able to measure accurately while

5 https://shelly.cloud/documents/user_guide/shelly_3em.pdf

http://192.168.33.1/
http://169.254.3.10/
https://shelly.cloud/documents/user_guide/shelly_3em.pdf

Cryptographically secure Smartmetering 11

measuring the voltage actively. Using a fixed value for the voltage instead (e.g.
measured by a multimeter beforehand) resulted in unreasonable inaccurate power
measurement values (e.g. 1 W instead of 60 W actual power).
As the last step save your changes.
To find out the WLAN IP you have two options. One is to connect again via Ethernet/LAN
and ssh to the SmartPi and use "ip a" to find the Wi-Fi IP of the SmartPi at its correct
network adapter. The other is to scan the address space of the Wi-Fi on the laptop with
the IP scanner of choice.

2.2 Data Storage and visualization

After setting up the Wi-Fi and MQTT connection the metering devices send data to the
server. On the server, the data received from the different devices is translated and stored
into an InfluxDB by Telegraf. Therefore, for different device types (e.g. Tasmota, Shelly,
SmartPi) rules for the translation must be defined accordingly. This makes sure the data
gets written into the database as expected.
To access the data from the InfluxDB, the Grafana Dashboard is used. Here multiple
queries can be done for each panel. This means we can show data from different metering
device types, which send their data using different formatting and naming of variables, in
one diagram. An example of how to query data in Grafana is shown in Figure 13.

Figure 13. Queries in Grafana

 Results of the resulting Dashboard will be presented in Chapter 4.

Cryptographically secure Smartmetering 12

3 Verification of the data

Wide areas of Germany are still using analog meters which are manually read by an official
inspection every year.
The reason for this is a lack of secure
implementation of smart-meter value
transfer between the households and
the operator.

So-called smart-meter-gateways are
already implemented in other countries
like the Netherlands, Belgium and
Spain6.
Here, the meter values are received by
a central operator who takes care of the
installation and operates the meter
value aggregation.

In the setting of shared measurement
data, a few things change.
As one meter can be used by different
operators, a standardized solution is
needed.
Having stored the data of multiple
households creates a high responsibility
for the data storage operator if the
meter values are used for billing or cross-campus monitoring.
This responsibility could create an incentive to tamper with the devices meter values to
influence the billing in a way it is beneficial for a man-in-the-middle or the operator itself.
For example, one could reduce the amount of used energy reported to the electricity
operator or increase the produced energy sent to the meter value operator.
Using smart meters, the transport needs to be secured in a way that no one can tamper
with the measured values created by the smart meter.
The demand for this is very similar to the implementation of the German Eichrecht (§ 3
Nr. 24b MessEG7) which handles the correct billing of charging stations for electric cars.

3.1 Asymmetric Encryption/Signatures

Asymmetric encryption, also known as public key encryption, uses two keys: a public key
and a private key. Data encrypted with the public key can only be decrypted with the

6 https://ses.jrc.ec.europa.eu/smart-metering-deployment-european-union
7 https://www.buzer.de/gesetz/10831/a183861.htm

Figure 14. Overview of current smart meter rollout in the European
union (Footnote 6)

https://ses.jrc.ec.europa.eu/smart-metering-deployment-european-union
https://www.buzer.de/gesetz/10831/a183861.htm

Cryptographically secure Smartmetering 13

associated private key. Conversely, data encrypted with the private key can only be
decrypted with the public key. This enables secure transmissions because only the
recipient who has the private key can read the data.
The recipient's public key is used to encrypt the data, while only the recipient's private key
can decrypt the data again. The private key must remain secret, while the public key can
be distributed without restrictions.

For example, if Alice wants to send Bob a message, she encrypts the message with Bob's
public key. Bob can then decrypt and read the message with his private key. Since only
Bob has the private key, the message can be securely protected from third parties.
This type of encryption is often used for secure transmissions on the Internet, such as
online banking or the transmission of confidential information.

In the use case of cryptographically secured meter values, the use of signatures is the
important aspect, which works just the other way around. Here, the sender's private key
is used to create a digital signature for the data. The recipient can then use the sender's
public key to verify the signature and ensure that the data has not been altered and
originated from the specified sender.

If Alice sends Bob a message and generates a digital signature, Bob can be sure that the
message is unaltered and came from Alice. Here, he can use Alice's public key to verify
the signature.

When it comes to ensuring the integrity of data sent over the Internet, signatures are the
standard way to do it. They guarantee that data remains unchanged and that it comes
from the specified sender.

We evaluated a different solution to tackle the need for secure meter values using
blockchain.
With blockchain, one would have to additionally serialize the incoming meter values to
put them in a sorted queue, which creates a lot of overhead and latency with nearly no
additional benefit.
Meter value events do not have the demand for strong consistency of their messages.
Using signatures allows us to verify a given meter value while only requiring its public key,
making it obsolete to store the whole blockchain for verification.
An example of a large project where blockchain was used without big success for the sole
need of verified PDF files can be seen in the German “Zeugnis-Blockchain”, which aimed
to improve validation of official education certificates. Yet it had many challenges to
handle the complexity which was created by using the blockchain approach, while a more
efficient solution using only the chain of trust and asymmetric signatures would be
sufficient for this use case8.

8 https://www.heise.de/news/Schlechtes-Zeugnis-fuer-Zeugnisse-in-der-Blockchain-6370807.html

https://www.heise.de/news/Schlechtes-Zeugnis-fuer-Zeugnisse-in-der-Blockchain-6370807.html

Cryptographically secure Smartmetering 14

3.2 Implementation of the validation
process

In order to add digital signatures to the MQTT-messages, and support verification of the
data, a couple of changes have been made to the source code of Tasmota, which can be
found on GitHub9.
For this we created a fork of the main repository and added the functionality of verified
signatures. This fork can be found on the projects GitHub page10.

3.2.1 Adding the signature

The algorithm used for the generation of the digital signature is Ed25519, which is a state-
of-the-art cryptographic methodology used for encryption and signing. For the
implementation the Arduino Cryptography Library of author Rhys Wheaterly was used;
source code can be found at arduinolibs11.
To add this library to Tasmota, it has to be set as the lib_deps expression of platformio.ini,
the project configuration file of platformio, which is the tool used to build the firmware.
After this, the Ed255519.h file is included when needed. This file contains three functions
that are used:

• generatePrivateKey(…), called once every time the device is hard reset,
• derivePublicKey(…), called every time the device is soft reset,
• sign(…), called every time a new message is created.

 The addition of the signature is divided into four tasks:

• Loading or generating the private and public keys,
• Creating a message,
• Calculation of the signature,
• Adding the signature to the MQTT message.

At start-up the private and public keys have to be either loaded or generated, depending
on whether it is the first time the device is configured or not. This means every device has
one private key, which is kept when the device is soft reset (e.g. restart button in webUI
or unplugged). But on a hard reset e.g., by power cycling 7 times, it loses all its
configuration parameters including its keys, so they will have to be regenerated on the
next boot.
To implement this, the setup() function of the tasmota.ino file was changed. This function
is called once every time the device is restarted and when completed, the loop() function
will be repeated.

9 https://github.com/arendst/Tasmota
10 https://github.com/bc4p/Tasmota
11https://github.com/rweather/arduinolibs
Documentation at: https://rweather.github.io/arduinolibs/index.html

https://github.com/arendst/Tasmota
https://github.com/bc4p/Tasmota
https://github.com/rweather/arduinolibsD
https://rweather.github.io/arduinolibs/index.html

Cryptographically secure Smartmetering 15

A flow of the implementation is shown in Figure 15. When restarted, and after the initial
unchanged setup of Tasmota, the public and private keys are read from the internal
EEPROM (internal memory). They are stored at an offset of 512 bytes to prevent collision
with the configuration and setting parameters of the device which are also stored in the
EEPROM. After this a check is done to see if a keypair was already generated previously
for the device. This is implemented by deriving the public key from the private key that is
loaded and checking whether this derived key matches the loaded public key. If this is not
the case, a new private key is generated, a new public key is derived and both are stored
in the EEPROM. During runtime the keys are stored in global variables, so that they can
be accessed everywhere.

Once the keys are loaded into the right variables, the calculations for the signature can
start. This is done by making changes to the xdrv_03_energy.ino file and introducing a new
custom file createSignature.ino which contains functions to calculate and print the
signature. The creation of the message is straight forward: the timestamp is taken from
the MQTT-message that is being prepared (TasmotaGlobal.mqtt_data) and the total
energy consumption measured by the device is added to it, divided by a comma. For
example: “2023-02-08T14:12:20,0.000”.

To calculate the signature, the sign()-function of the Ed25519 library is called. The creation
of the message and calculation of the signature are done in the same custom function.

Finally, the signature is added to the MQTT-message by another custom function.
Currently it is put between the timestamp and the energy values, as can be seen in the
example of 3.2.4, although this can be changed easily by just calling the function at a
different line. The printing happens by calling the ResponseAppend_P() function of
Tasmota, which expects a formatted string and its arguments. The 32-byte array signature
is printed byte by byte.

3.2.2 Other changes

Besides adding the signature itself, some other small changes were done. The most
important one is implementing a way to communicate the public key of the device. It was
opted to show this in the information tab of the webUI, which meant the
xdrv_01_9_webserver.ino file had to be changed. The WSContentSend_P() function is
called to add the public key in the already existing table; this is done byte by byte.

Another small change is the communication of the firmware name and version, shown in
the bottom part of the webUI. This is done in the webserver file by editing the HTTP_END
variable, which is a variable stored in the flash memory of the device. The clickable link
has also been changed to redirect the user to the bc4p branch of Tasmota. The new name
and version have been changed to “BC4P Custom Tasmota 1.0.0”. To change the version
(1.0.0), the tasmota_version.h file had to be altered.

Finally, a modification of the firmware was implemented to make flashing of the custom
Tasmota firmware easier. When the standard Tasmota is flashed on a device, there is not

Cryptographically secure Smartmetering 16

enough space available to instantly flash new firmware. Instead, an intermediate step of
flashing Tasmota-minimal had to be executed every time. To make the binary file smaller,
some unnecessary functionality was excluded by creating a user_config_override.h file
and excluding some macro’s defined in the my_user_config.h file of Tasmota. In this way,
the size was reduced from 628kB to 501kB.
An overview of the flow and the changes made to the Tasmota source code can be seen
in Figure 15.

Figure 15. Flow and overview of changes made to Tasmota source code

3.2.3 Digital signature in charging stations

Our implementation of adding a digital signature to energy-monitoring devices can be
compared with the software in charging stations for electrical cars, where digital
signatures are also used. In Germany this is required by the Eichrecht.

The Eichrecht is a set of legal regulations that governs the use of measuring instruments
in commercial transactions. The purpose of these regulations is to ensure that measuring
instruments are accurate, reliable and traceable, and that they are used in a manner that
is transparent and fair to consumers.
In addition to some regulations on the physical measuring instruments itself, the
Eichrecht also requires charging stations to be equipped with digital signatures to verify

Cryptographically secure Smartmetering 17

the integrity of the data generated by the measuring instruments. This is intended to
prevent manipulation or tampering of the data.

Information about the exact implementation, was not found. However, the signature itself
is calculated on the following information [4]:

• Measurement: e.g. meter start and stop value or difference
• Unit of measurement
• Time stamp
• Unique ID of charging system (e.g. EVSE-ID or Meter-ID)
• Identification of consumer (e.g. EMAID, Session-ID, UID, RFID)

Figure 16 visualizes where data is signed and encrypted when using charging stations for
electrical vehicles and how the customer can verify the data.

Figure 16. Signed data at charging stations

3.2.4 Validation server

To verify that the messages sent by the Tasmota devices are not changed or manipulated
in any way, the server receiving the MQTT messages from the Tasmota device needs to
verify the signature.
Just to give a short recap how the message is signed by the Tasmota device: A hashing
algorithm is applied to the time of the measurement and the total value which yields the
signature as a string using the private key of the Tasmota device. The signature created is
then appended to the MQTT message with the Key “Signature”. An example for the full
MQTT Message which is received by the MQTT Broker looks like this:

tele/tasmota_hackathon01/SENSOR{"Time":"2023-02-08T13:54:26","Signature":
{9ae109b672774e2edc29bce5b626146af35fb482dedd73ba369b9351b508708a277aa568
b56b8a3b85105b19633506460afb82622fc20fb01fb10d35d0db3508},
"ENERGY":{"TotalStartTime":"2023-02-06T08:33:28","Total":1.581,"Yesterday":0.584,
"Today":0.498,"Period":1,"Power":51,"ApparentPower":78,"ReactivePower":59,
"Factor":0.65,"Voltage":234,"Current":0.333}}

Cryptographically secure Smartmetering 18

To validate this message on the Server, the public key of the Tasmota device which sent
the message is needed. The public key is then used to decrypt the Signature in the MQTT
message. If the decryption yields exactly the encrypted message, the signature is verified.
In this example, the decryption must return “2023-02-08T13:54:26,1.581” to be validated.

This process is implemented in the SmartCryptometer-Validator which can be found
here12.
To set up and run this program, the steps described on the GitHub page can be followed.
It is important to put the device name of the Tasmota device as well as the public key of
the device into the pub_keys.json file in the form of "DEVICE NAME":"PUBLIC KEY". By
doing that, the program can match the name of the device with the topic of the MQTT
messages to get the public key of that specific device. After that, the message is decrypted
with the public key as described before.

The program continuously listens for MQTT messages and checks if the signature is valid.
The result of the validation process for the last sent message of each device is displayed
on a website which can be found under13.
The figure below shows the linked website. All devices specified in the pub_keys.json file
which sent messages to the MQTT Broker are listed here. For each device, the name, last
value, timestamp and whether the message is verified or not, can be seen. Last value and
timestamp are, again, the values used to verify the signature.

Figure 17. Website of the Smartmeter Signature Checker

In this example, two devices were flashed with the forked Tasmota Firmware sending
messages to the MQTT Broker. This can be extended with more devices compatible with
Tasmota. Furthermore, this implementation gives the security needed for the transfer of
energy monitoring data so that the data can be trusted and used for billing or trading, to
give some examples.
Still, one has to trust that the measurement from the physical measuring sensor is correct
and the device is not moved to a different power plug, where different measurements are
possible.

12 https://github.com/bc4p/SmartCryptometer-Validator
13 https://bc4p.nowum.fh-aachen.de/validator

https://github.com/bc4p/SmartCryptometer-Validator
https://bc4p.nowum.fh-aachen.de/validator

Cryptographically secure Smartmetering 19

To conclude, this method can only validate the data against manipulation on the software
side but not against a physical manipulation of the device or the circumstances where and
how it measures the data.

Cryptographically secure Smartmetering 20

4 Results and Visualizations
The data that is being sent to the server over MQTT and stored in the InfluxDB is visualized
using Grafana. Several dashboards for the different pilot projects have been created,
where the energy data can be monitored and analyzed. Data from different metering
devices can be accessed from these dashboards. Besides information about the past
energy consumption/production and resulting costs, one can also get live energy usage
from the monitoring system and a detailed view on electrical devices that are connected
to a Smartplug, as these sensors can send updated measures every 10 seconds.

Figure 18: Data Analysis in a Grafana Dashboard

The live data can be used to optimize energy consumption. Smart devices can be
programmed to preferably run when a building with energy generation from e.g. solar
panels produces more energy than the building requires.

Figure 19 Analysis dashboard for economic parameters

Cryptographically secure Smartmetering 21

If the building produces more energy than it can use, the excess energy can be sold.
Looking at yearly cost and consumption of a device allows the user to compare the actual
power usage of a device with its energy label, and predict the yearly cost of operating a
tested device.

5 Conclusion & Further Developments

In the work package WPT3.2 we evaluated different metering devices, some which are
usable as a plug while others can be used as non-intrusive energy measurement devices.
Both categories can be used in conjunction with the open-source firmware Tasmota,
which allowed us to showcase a proof of concept for cryptographically signed secure
energy measurements.
The verification of the data can be seen on a dashboard which shows the current health
of the meters as well as their latest values.
In a first step, the resulting data was visualized on various dashboards, to provide insights
on energy usage.
Besides of the visualization of the data, it is possible to use the meter values which are
stored in a consistent and efficient manner in a time series database. The database being
used is InfluxDB. This database can be accessed publicly and used for further data
analysis of the historical energy usage time series.
The data can be used for many more valuable use cases and to gain better insights. As
many different devices and buildings are measured, there is data on a device level as well
as aggregated data of the main electric power line of buildings measured. This data could
be used for the training of machine learning models. The aggregated data can be used as
input for a neural network which disaggregates the data into the device-specific energy
consumption. This is especially valuable for buildings and companies without the need to
measure each appliance individually because energy monitoring and insights could be
generated by applying the algorithm to the aggregated time series metering
measurements.

As machine learning-based prediction models require a lot of data to be efficiently used,
we are also investigating to measure multiple different laboratory rooms to aggregate
data on their typical energy usage mid-semester as well as in the typical non-lecture
period (base load). The results will be provided in the pilot of Jülich.

Finally, cryptographic secure measurements are required for distributed metering
solutions as needed in blockchain-based energy markets. This proof of concept therefore
provides a foundation for the implementation and investigation of future distributed
energy markets.

Cryptographically secure Smartmetering 22

6 References

[1] Aretz, Astrid, Mark Bost, and Bernd Hirschl. "Prosumer für die Energiewende."
Ökologisches Wirtschaften-Fachzeitschrift 2 (2016): 14-15.

[2] public grafana https://monitor.nowum.fh-aachen.de

[3] Klaus, Joachim, et al. "Blockchain in der Energiewirtschaft." Smart City–Made in
Germany: Die Smart-City-Bewegung als Treiber einer gesellschaftlichen Transformation.
Wiesbaden: Springer Fachmedien Wiesbaden, 2020. 329-337.

[4] Charging infrastructure
https://www.rvo.nl/sites/default/files/2019/04/German%20charging%20infrastructure%2
0regulations%20report%20march%202019_0.pdf or
https://www.linkedin.com/pulse/mess-und-eichrecht-germany-sahil-taksali

[5] P. A. Schirmer and I. Mporas, "Non-Intrusive Load Monitoring: A Review," in IEEE
Transactions on Smart Grid, vol. 14, no. 1, pp. 769-784, Jan. 2023, doi:
10.1109/TSG.2022.3189598.

https://www.rvo.nl/sites/default/files/2019/04/German%20charging%20infrastructure%20regulations%20report%20march%202019_0.pdf
https://www.rvo.nl/sites/default/files/2019/04/German%20charging%20infrastructure%20regulations%20report%20march%202019_0.pdf
https://www.linkedin.com/pulse/mess-und-eichrecht-germany-sahil-taksali

	1 Introduction
	2 Data Collection
	2.1 Metering Devices
	2.1.1 Smart Plugs
	2.1.2 Calibration
	2.1.3 Connection to the BC4P Data Server with MQTT broker
	2.1.4 Flashing custom firmware
	2.1.5 NIEM Devices

	2.2 Data Storage and visualization

	3 Verification of the data
	3.1 Asymmetric Encryption/Signatures
	3.2 Implementation of the validation process
	3.2.1 Adding the signature
	3.2.2 Other changes
	3.2.3 Digital signature in charging stations
	3.2.4 Validation server

	4 Results and Visualizations
	5 Conclusion & Further Developments
	6 References

